Read object stream java
An ObjectInputStream deserializes primitive data and objects previously written using an ObjectOutputStream. Warning: Deserialization of untrusted data is inherently dangerous and should be avoided. Untrusted data should be carefully validated according to the «Serialization and Deserialization» section of the Secure Coding Guidelines for Java SE. Serialization Filtering describes best practices for defensive use of serial filters. ObjectOutputStream and ObjectInputStream can provide an application with persistent storage for graphs of objects when used with a FileOutputStream and FileInputStream respectively. ObjectInputStream is used to recover those objects previously serialized. Other uses include passing objects between hosts using a socket stream or for marshaling and unmarshaling arguments and parameters in a remote communication system. ObjectInputStream ensures that the types of all objects in the graph created from the stream match the classes present in the Java Virtual Machine. Classes are loaded as required using the standard mechanisms. Only objects that support the java.io.Serializable or java.io.Externalizable interface can be read from streams. The method readObject is used to read an object from the stream. Java’s safe casting should be used to get the desired type. In Java, strings and arrays are objects and are treated as objects during serialization. When read they need to be cast to the expected type. Primitive data types can be read from the stream using the appropriate method on DataInput. The default deserialization mechanism for objects restores the contents of each field to the value and type it had when it was written. Fields declared as transient or static are ignored by the deserialization process. References to other objects cause those objects to be read from the stream as necessary. Graphs of objects are restored correctly using a reference sharing mechanism. New objects are always allocated when deserializing, which prevents existing objects from being overwritten. Reading an object is analogous to running the constructors of a new object. Memory is allocated for the object and initialized to zero (NULL). No-arg constructors are invoked for the non-serializable classes and then the fields of the serializable classes are restored from the stream starting with the serializable class closest to java.lang.object and finishing with the object’s most specific class. For example to read from a stream as written by the example in ObjectOutputStream:
FileInputStream fis = new FileInputStream("t.tmp"); ObjectInputStream ois = new ObjectInputStream(fis); int i = ois.readInt(); String today = (String) ois.readObject(); Date date = (Date) ois.readObject(); ois.close();
Classes control how they are serialized by implementing either the java.io.Serializable or java.io.Externalizable interfaces. Implementing the Serializable interface allows object serialization to save and restore the entire state of the object and it allows classes to evolve between the time the stream is written and the time it is read. It automatically traverses references between objects, saving and restoring entire graphs. Serializable classes that require special handling during the serialization and deserialization process should implement the following methods:
private void writeObject(java.io.ObjectOutputStream stream) throws IOException; private void readObject(java.io.ObjectInputStream stream) throws IOException, ClassNotFoundException; private void readObjectNoData() throws ObjectStreamException;
The readObject method is responsible for reading and restoring the state of the object for its particular class using data written to the stream by the corresponding writeObject method. The method does not need to concern itself with the state belonging to its superclasses or subclasses. State is restored by reading data from the ObjectInputStream for the individual fields and making assignments to the appropriate fields of the object. Reading primitive data types is supported by DataInput. Any attempt to read object data which exceeds the boundaries of the custom data written by the corresponding writeObject method will cause an OptionalDataException to be thrown with an eof field value of true. Non-object reads which exceed the end of the allotted data will reflect the end of data in the same way that they would indicate the end of the stream: bytewise reads will return -1 as the byte read or number of bytes read, and primitive reads will throw EOFExceptions. If there is no corresponding writeObject method, then the end of default serialized data marks the end of the allotted data. Primitive and object read calls issued from within a readExternal method behave in the same manner—if the stream is already positioned at the end of data written by the corresponding writeExternal method, object reads will throw OptionalDataExceptions with eof set to true, bytewise reads will return -1, and primitive reads will throw EOFExceptions. Note that this behavior does not hold for streams written with the old ObjectStreamConstants.PROTOCOL_VERSION_1 protocol, in which the end of data written by writeExternal methods is not demarcated, and hence cannot be detected. The readObjectNoData method is responsible for initializing the state of the object for its particular class in the event that the serialization stream does not list the given class as a superclass of the object being deserialized. This may occur in cases where the receiving party uses a different version of the deserialized instance’s class than the sending party, and the receiver’s version extends classes that are not extended by the sender’s version. This may also occur if the serialization stream has been tampered; hence, readObjectNoData is useful for initializing deserialized objects properly despite a «hostile» or incomplete source stream. Serialization does not read or assign values to the fields of any object that does not implement the java.io.Serializable interface. Subclasses of Objects that are not serializable can be serializable. In this case the non-serializable class must have a no-arg constructor to allow its fields to be initialized. In this case it is the responsibility of the subclass to save and restore the state of the non-serializable class. It is frequently the case that the fields of that class are accessible (public, package, or protected) or that there are get and set methods that can be used to restore the state. The contents of the stream can be filtered during deserialization. If a filter is set on an ObjectInputStream, the ObjectInputFilter can check that the classes, array lengths, number of references in the stream, depth, and number of bytes consumed from the input stream are allowed and if not, can terminate deserialization. A process-wide filter can be configured that is applied to each ObjectInputStream unless replaced using setObjectInputFilter . Any exception that occurs while deserializing an object will be caught by the ObjectInputStream and abort the reading process. Implementing the Externalizable interface allows the object to assume complete control over the contents and format of the object’s serialized form. The methods of the Externalizable interface, writeExternal and readExternal, are called to save and restore the objects state. When implemented by a class they can write and read their own state using all of the methods of ObjectOutput and ObjectInput. It is the responsibility of the objects to handle any versioning that occurs. Enum constants are deserialized differently than ordinary serializable or externalizable objects. The serialized form of an enum constant consists solely of its name; field values of the constant are not transmitted. To deserialize an enum constant, ObjectInputStream reads the constant name from the stream; the deserialized constant is then obtained by calling the static method Enum.valueOf(Class, String) with the enum constant’s base type and the received constant name as arguments. Like other serializable or externalizable objects, enum constants can function as the targets of back references appearing subsequently in the serialization stream. The process by which enum constants are deserialized cannot be customized: any class-specific readObject, readObjectNoData, and readResolve methods defined by enum types are ignored during deserialization. Similarly, any serialPersistentFields or serialVersionUID field declarations are also ignored—all enum types have a fixed serialVersionUID of 0L.
Object Streams
Just as data streams support I/O of primitive data types, object streams support I/O of objects. Most, but not all, standard classes support serialization of their objects. Those that do implement the marker interface Serializable .
The object stream classes are ObjectInputStream and ObjectOutputStream . These classes implement ObjectInput and ObjectOutput , which are subinterfaces of DataInput and DataOutput . That means that all the primitive data I/O methods covered in Data Streams are also implemented in object streams. So an object stream can contain a mixture of primitive and object values. The ObjectStreams example illustrates this. ObjectStreams creates the same application as DataStreams , with a couple of changes. First, prices are now BigDecimal objects, to better represent fractional values. Second, a Calendar object is written to the data file, indicating an invoice date.
If readObject() doesn’t return the object type expected, attempting to cast it to the correct type may throw a ClassNotFoundException . In this simple example, that can’t happen, so we don’t try to catch the exception. Instead, we notify the compiler that we’re aware of the issue by adding ClassNotFoundException to the main method’s throws clause.
Output and Input of Complex Objects
The writeObject and readObject methods are simple to use, but they contain some very sophisticated object management logic. This isn’t important for a class like Calendar, which just encapsulates primitive values. But many objects contain references to other objects. If readObject is to reconstitute an object from a stream, it has to be able to reconstitute all of the objects the original object referred to. These additional objects might have their own references, and so on. In this situation, writeObject traverses the entire web of object references and writes all objects in that web onto the stream. Thus a single invocation of writeObject can cause a large number of objects to be written to the stream.
This is demonstrated in the following figure, where writeObject is invoked to write a single object named a. This object contains references to objects b and c, while b contains references to d and e. Invoking writeobject(a) writes not just a, but all the objects necessary to reconstitute a, so the other four objects in this web are written also. When a is read back by readObject , the other four objects are read back as well, and all the original object references are preserved.
I/O of multiple referred-to objects
You might wonder what happens if two objects on the same stream both contain references to a single object. Will they both refer to a single object when they’re read back? The answer is «yes.» A stream can only contain one copy of an object, though it can contain any number of references to it. Thus if you explicitly write an object to a stream twice, you’re really writing only the reference twice. For example, if the following code writes an object ob twice to a stream:
Object ob = new Object(); out.writeObject(ob); out.writeObject(ob);
Each writeObject has to be matched by a readObject , so the code that reads the stream back will look something like this:
Object ob1 = in.readObject(); Object ob2 = in.readObject();
This results in two variables, ob1 and ob2 , that are references to a single object.
However, if a single object is written to two different streams, it is effectively duplicated a single program reading both streams back will see two distinct objects.