Python установить модуль pandas

Установка¶

Проще всего установить pandas в составе Anaconda — кроссплатформенного дистрибутива для анализа данных и научных вычислений. Это рекомендуемый метод установки для большинства пользователей.

Здесь вы также найдете инструкции по установке из исходников, с помощью PyPI, ActivePython, различных дистрибутивов Linux и версию для разработки.

Поддержка версий Python¶

Официально поддерживается Python 3.8, 3.9 и 3.10.

Установка pandas¶

Установка с помощью Anaconda¶

Установка pandas и остальной части стека NumPy и SciPy может быть немного сложной для неопытных пользователей.

Проще всего установить не только pandas, но и Python и самые популярные пакеты, составляющие стек SciPy (IPython , NumPy, Matplotlib и так далее) с использованием Anaconda — кроссплатформенного (Linux, macOS, Windows) дистрибутива Python для анализа данных и научных вычислений.

После запуска установщика пользователь получит доступ к pandas и остальной части стека SciPy без необходимости устанавливать что-либо еще и без необходимости ждать, пока какое-либо программное обеспечение будет скомпилировано.

Инструкции по установке Anaconda можно найти здесь.

Полный список пакетов, доступных в составе дистрибутива Anaconda, можно найти здесь.

Еще одним преимуществом установки Anaconda является то, что вам не нужны права администратора для ее установки. Anaconda может быть установлена в домашнем каталоге пользователя, что упрощает удаление Anaconda в случае необходимости (просто удалите эту папку).

Установка с помощью Miniconda¶

В предыдущем разделе было описано, как установить pandas в составе дистрибутива Anaconda. Однако этот подход означает, что вы установите более сотни пакетов и предполагает загрузку установщика, размер которого составляет несколько сотен мегабайт.

Если вы хотите иметь больший контроль над пакетами или пропускная способность интернета у вас ограничена, то установка pandas с помощью Miniconda может вам подойти лучше.

Conda — это менеджер пакетов, на котором построен дистрибутив Anaconda. Это менеджер пакетов, который является одновременно кроссплатформенным и независимым от языка (он похож на комбинацию pip и virtualenv).

Miniconda позволяет вам создать минимальную автономную установку Python, а затем использовать команды Conda для установки дополнительных пакетов (см. краткое руководство по Miniconda на русском).

Сначала вам нужно установить Conda, и загрузка и запуск Miniconda решит эту задачу. Установщик можно найти здесь.

Следующим шагом является создание новой среды conda. Виртуальная среда conda похожа на ту, которая создается virtualenv, она позволяет указать конкретную версию Python и набор библиотек. Запустите следующие команды из окна терминала:

conda create -n name_of_my_env python 

Это создаст минимальную среду, в которой будет установлен только Python. Чтобы активировать эту среду, запустите:

source activate name_of_my_env 

В Windows команда следующая:

Последним шагом необходимо установить pandas. Это можно сделать с помощью следующей команды:

Установить определенную версию pandas:

Установить другие пакеты, например, IPython:

Установить полный дистрибутив Anaconda:

Если вам нужны пакеты, доступные для pip, но не для conda, установите pip, а затем используйте pip для установки этих пакетов:

conda install pip pip install django 

Установка из PyPI¶

pandas можно установить через pip из PyPI.

У вас должен быть pip>=19.3 для установки из PyPI.

Установка с ActivePython¶

Инструкции по установке ActivePython можно найти здесь. Версии 2.7, 3.5 и 3.6 включают pandas.

Установка с помощью менеджера пакетов вашего дистрибутива Linux.¶

Команды в этой таблице установят pandas для Python 3 из вашего дистрибутива.

Ссылка на скачивание / репозиторий

sudo apt-get install python3-pandas

нестабильный (последние пакеты)

sudo apt-get install python3-pandas

sudo apt-get install python3-pandas

dnf install python3-pandas

yum install python3-pandas

Однако пакеты в менеджерах пакетов linux часто отстают на несколько версий, поэтому, чтобы получить новейшую версию pandas, рекомендуется устанавливать ее с помощью команд pip или conda , описанных выше.

Обработка ошибок импорта¶

Если вы столкнулись с ошибкой ImportError, это обычно означает, что Python не смог найти pandas в списке доступных библиотек. Внутри Python есть список каталогов, в которых он ищет пакеты. Вы можете получить список этих каталогов с помощью команды:

Одна из возможных причин ошибки — это если Python в системе установлен более одного раза, и pandas не установлен в том Python, который вы используете на текущий момент. В Linux/Mac вы можете запустить what python на своем терминале, и он сообщит вам, какой Python вы используете. Если это что-то вроде «/usr/bin/python», вы используете Python из системы, что не рекомендуется.

Настоятельно рекомендуется использовать conda для быстрой установки и обновления пакетов и зависимостей. Вы можете найти простые инструкции по установке pandas в этом документе.

Установка из исходников¶

Полные инструкции по сборке из исходного дерева git см. в Contributing guide. Если вы хотите создать среду разработки pandas, смотрите Creating a development environment.

Запуск набора тестов¶

pandas оснащен исчерпывающим набором модульных тестов, покрывающих около 97% кодовой базы на момент написания этой статьи. Чтобы запустить его на своем компьютере и удостовериться, что все работает (и что у вас установлены все зависимости, программные и аппаратные), убедитесь, что у вас есть pytest >= 6.0 и Hypothesis >= 3.58, затем запустите:

>>> pd.test() running: pytest --skip-slow --skip-network C:\Users\TP\Anaconda3\envs\py36\lib\site-packages\pandas ============================= test session starts ============================= platform win32 -- Python 3.6.2, pytest-3.6.0, py-1.4.34, pluggy-0.4.0 rootdir: C:\Users\TP\Documents\Python\pandasdev\pandas, inifile: setup.cfg collected 12145 items / 3 skipped . S. . S. . ==================== 12130 passed, 12 skipped in 368.339 seconds ===================== 

Зависимости¶

Минимальная поддерживаемая версия

Источник

Installation#

The easiest way to install pandas is to install it as part of the Anaconda distribution, a cross platform distribution for data analysis and scientific computing. This is the recommended installation method for most users.

Instructions for installing from source, PyPI, ActivePython, various Linux distributions, or a development version are also provided.

Python version support#

Officially Python 3.8, 3.9, 3.10 and 3.11.

Installing pandas#

Installing with Anaconda#

Installing pandas and the rest of the NumPy and SciPy stack can be a little difficult for inexperienced users.

The simplest way to install not only pandas, but Python and the most popular packages that make up the SciPy stack (IPython, NumPy, Matplotlib, …) is with Anaconda, a cross-platform (Linux, macOS, Windows) Python distribution for data analytics and scientific computing.

After running the installer, the user will have access to pandas and the rest of the SciPy stack without needing to install anything else, and without needing to wait for any software to be compiled.

Installation instructions for Anaconda can be found here.

A full list of the packages available as part of the Anaconda distribution can be found here.

Another advantage to installing Anaconda is that you don’t need admin rights to install it. Anaconda can install in the user’s home directory, which makes it trivial to delete Anaconda if you decide (just delete that folder).

Installing with Miniconda#

The previous section outlined how to get pandas installed as part of the Anaconda distribution. However this approach means you will install well over one hundred packages and involves downloading the installer which is a few hundred megabytes in size.

If you want to have more control on which packages, or have a limited internet bandwidth, then installing pandas with Miniconda may be a better solution.

Conda is the package manager that the Anaconda distribution is built upon. It is a package manager that is both cross-platform and language agnostic (it can play a similar role to a pip and virtualenv combination).

Miniconda allows you to create a minimal self contained Python installation, and then use the Conda command to install additional packages.

First you will need Conda to be installed and downloading and running the Miniconda will do this for you. The installer can be found here

The next step is to create a new conda environment. A conda environment is like a virtualenv that allows you to specify a specific version of Python and set of libraries. Run the following commands from a terminal window:

conda create -n name_of_my_env python 

This will create a minimal environment with only Python installed in it. To put your self inside this environment run:

source activate name_of_my_env 

On Windows the command is:

The final step required is to install pandas. This can be done with the following command:

To install a specific pandas version:

To install other packages, IPython for example:

To install the full Anaconda distribution:

If you need packages that are available to pip but not conda, then install pip, and then use pip to install those packages:

conda install pip pip install django 

Installing from PyPI#

pandas can be installed via pip from PyPI.

You must have pip>=19.3 to install from PyPI.

pandas can also be installed with sets of optional dependencies to enable certain functionality. For example, to install pandas with the optional dependencies to read Excel files.

The full list of extras that can be installed can be found in the dependency section.

Installing with ActivePython#

Installation instructions for ActivePython can be found here. Versions 2.7, 3.5 and 3.6 include pandas.

Installing using your Linux distribution’s package manager.#

The commands in this table will install pandas for Python 3 from your distribution.

Download / Repository Link

Источник

Читайте также:  Functions in javascript with function as property
Оцените статью