- Массивы Python
- Создание массива
- Многомерный массив
- Операции с массивами
- Обход массива с использованием цикла for
- Обход многомерного массива
- Добавление
- Определение размера
- Срез
- Функция pop
- Методы массива
- Модуль array
- Типы элементов массива
- Python: двумерные и многомерные массивы
- Двумерный массив в Python
- Многомерный массив в Python
- Выводы
- Python объявление трехмерного массива
- 2. Изменяем форму с помощью метода reshape()
- Источники
Массивы Python
Основы
В Питоне нет структуры данных, полностью соответствующей массиву. Однако, есть списки, которые являются их надмножеством, то есть это те же массивы, но с расширенным функционалом. Эти структуры удобнее в использовании, но цена такого удобства, как всегда, производительность и потребляемые ресурсы. И массив, и список – это упорядоченные коллекции, но разница между ними заключается в том, что классический массив должен содержать элементы только одного типа, а список Python может содержать любые элементы.
shapito_list = [1, 'qwerty', 4/3, [345, ['a', ]]] print(shapito_list) # Вывод: [1, 'qwerty', 1.3333333333333333, [345, ['a', ]]]Создание массива
Существует несколько способ создать массив. Ниже приведены примеры как это можно сделать.
можно_так = [1, 2, 3, 4, 5] можно_так_2 = list('итерируемый объект') а_можно_и_так = [i for i in range(5)] print('можно_так:', можно_так) print('можно_так_2:', можно_так_2) print('а_можно_и_так:', а_можно_и_так) print('можно_так[0]:', можно_так[0]) print('а_можно_и_так[3]:', а_можно_и_так[3]) # Вывод: можно_так: [1, 2, 3, 4, 5] можно_так_2: ['и', 'т', 'е', 'р', 'и', 'р', 'у', 'е', 'м', 'ы', 'й', ' ', 'о', 'б', 'ъ', 'е', 'к', 'т'] а_можно_и_так: [0, 1, 2, 3, 4] можно_так[0]: 1 а_можно_и_так[3]: 3Многомерный массив
Двухмерный массив в Python можно объявить следующим образом.
example_array = [[-1, 0, 0, 1], [2, 3, 5, 8]] print(example_array[0]) print(example_array[1]) print(example_array[0][3]) # Вывод: [-1, 0, 0, 1] [2, 3, 5, 8] 1example_array = [[[-1, 0], [0, 1]], [[2, 3], [5, 8]]] print(example_array[0]) print(example_array[1]) print(example_array[0][1]) print(example_array[0][1][0]) # Вывод: [[-1, 0], [0, 1]] [[2, 3], [5, 8]] [0, 1] 0Операции с массивами
Давайте теперь рассмотрим операции, которые Пайтон позволяет выполнять над массивами.
Обход массива с использованием цикла for
Мы можем использовать цикл for для обхода элементов массива.
example_array = [1, 2, 3] for i in range(len(example_array)): print(example_array[i]) # Вывод: 1 2 3Здесь представлен подход, свойственный большинству языков программирования. В Python же есть свой, более удобный вариант.
example_array = [1, 2, 3] for i in example_array: print(i) # Вывод: 1 2 3Обход многомерного массива
Для того чтоб получить элементы многомерного массива придётся использовать вложенные циклы.
example_array = [[1, 2], [3, 4]] for i in example_array: for x in i: print(x) # Вывод: 1 2 3 4Добавление
Мы можем использовать функцию insert() для вставки элемента по указанному индексу. Элементы из указанного индекса сдвигаются вправо на одну позицию.
example_array = [[1, 2], [3, 4]] example_array.insert(0, -1) example_array.insert(2, [-1, 13, 64]) print(example_array) # Вывод: [-1, [1, 2], [-1, 13, 64], [3, 4]]example_array = [[1, 2], [3, 4]] example_array.append(-1) example_array.append([-1, 13, 64]) print(example_array) # Вывод: [[1, 2], [3, 4], -1, [-1, 13, 64]]example_array = [1, 2, 3, 4] example_array.extend([5, 6]) print(example_array) # Вывод: [1, 2, 3, 4, 5, 6]Определение размера
Используйте метод len() чтобы вернуть длину массива (число элементов массива).
Не стоит путать размер массива с его размерностью!example_array = [[1, 2], [3, 4]] print('Размер массива:', len(example_array)) example_array.append(-1) print('Размер массива:', len(example_array)) example_array.append([-1, 13, 64]) print('Размер массива:', len(example_array)) # Вывод: Размер массива: 2 Размер массива: 3 Размер массива: 4Поскольку индексация элементов начинается с нуля, длина массива всегда на единицу больше, чем индекс последнего элемента.
example_array = [[1, 2], [3, 4]] print('Равна ли длина массива номеру последнего элемента + 1?', len(example_array) is (example_array.index(example_array[-1]) + 1)) example_array.append(-1) print('Увеличили размер массива.') print('Равна ли теперь длина массива номеру последнего элемента + 1?', len(example_array) is (example_array.index(example_array[-1]) + 1)) # Вывод: Равна ли длина массива номеру последнего элемента + 1? True Увеличили размер массива. Равна ли теперь длина массива номеру последнего элемента + 1? TrueНебольшое пояснение: метод списка .index() возвращает индекс элемента, значение которого совпадает с тем, которое передали методу. Здесь мы передаём значение последнего элемента и, таким образом, получаем индекс последнего элемента. Будьте осторожны: если в списке есть повторяющиеся значения, этот приём не сработает!
Срез
Срез Python предоставляет особый способ создания массива из другого массива.
example_array = [[1, 2], [3, 4]] print(example_array[::-1]) print(example_array[1:]) print(example_array[0][:-1]) # Вывод: [[3, 4], [1, 2]] [[3, 4]] [1]Функция pop
В Python удалить ненужные элементы из массива можно при помощи метода pop, аргументом которого является индекс ячейки. Как и в случае с добавлением нового элемента, метод необходимо вызвать через ранее созданный объект.
example_array = [1, 2, 6, 3, 4] print(example_array.pop(4)) print(example_array) # Вывод: 4 [1, 2, 6, 3]После выполнения данной операции содержимое массива сдвигается так, чтобы количество доступных ячеек памяти совпадало с текущим количеством элементов.
Методы массива
В Python есть набор встроенных методов, которые вы можете использовать при работе с list.
Метод | Значение |
append() | Добавляет элементы в конец списка |
clear() | Удаляет все элементы в списке |
copy() | Возвращает копию списка |
count() | Возвращает число элементов с определенным значением |
extend() | Добавляет элементы списка в конец текущего списка |
index() | Возвращает индекс первого элемента с определенным значением |
insert() | Добавляет элемент в определенную позицию |
pop() | Удаляет элемент по индексу |
remove() | Убирает элементы по значению |
reverse() | Разворачивает порядок в списке |
sort() | Сортирует список |
Модуль array
Если Вам всё-таки нужен именно классический массив, вы можете использовать встроенный модуль array. Он почти не отличается от структуры list, за исключением, пожалуй, объявления.
Вот небольшая демонстрация:
import array example_array = array.array('i', [1, 2, 6, 3, 4]) # превый аргумент указывает на тип элементов. i означает integer example_array.insert(0, -1) print('После вставки:', example_array) example_array.append(-1) print('После добавления в конец:', example_array) example_array.extend([5, 6]) print('После объединения со списком:', example_array) print('Удалён элемент:', example_array.pop(4)) print('После удаления элемента:', example_array) print('Срез:', example_array[0:4]) # Вывод: После вставки: array('i', [-1, 1, 2, 6, 3, 4]) После добавления в конец: array('i', [-1, 1, 2, 6, 3, 4, -1]) После объединения со списком: array('i', [-1, 1, 2, 6, 3, 4, -1, 5, 6]) Удалён элемент: 3 После удаления элемента: array('i', [-1, 1, 2, 6, 4, -1, 5, 6]) Срез: array('i', [-1, 1, 2, 6])Типы элементов массива
Элементы массива в модуле array могут быть следующих типов:
Код типа | Тип в C | Тип в python |
‘b’ | signed char | int |
‘B’ | unsigned char | int |
‘h’ | signed short | int |
‘H’ | unsigned short | int |
‘i’ | signed int | int |
‘I’ | unsigned int | int |
‘l’ | signed long | int |
‘L’ | unsigned long | int |
‘q’ | signed long long | int |
‘Q’ | unsigned long long | int |
‘f’ | float | float |
‘d’ | double | float |
Как Вы можете видеть, со строками модуль не работает.
Python: двумерные и многомерные массивы
Иногда для правильного представления набора данных простого одномерного массива недостаточно. В таких случаях используют двумерные и многомерные массивы. Однако в Python 3 таких массивов, по сути, не существует. Но это не проблема, так как базовые возможности платформы позволяют легко создавать двумерные списки.
Двумерный массив в Python
Давайте посмотрим на элементы подобной конструкции массива. Обратите внимание, что они располагаются в столбцах и строках, которые заполняются следующим образом:
a1 = [] for j in range(5): a2 = [] for i in range(5): a2.append(0) a1.append(a2)Мы можем увидеть, что главная идея реализации двумерного набора данных — создание нескольких списков a2 внутри одного большого списка a1. Далее, посредством 2-х циклов for осуществляется автозаполнение нулями матрицы, имеющей размерность 5×5. И эту задачу успешно решают методы append и range — первый добавляет в список новый элемент (0), второй устанавливает его величину (5).
Следует сказать, что для каждого нового for-цикла применяется своя временная переменная, которая выполняет представление текущего элемента внутренних (i) или внешнего (j) списков. Чтобы обратиться к требуемой ячейке многомерного списка, надо указать её координаты в квадратных скобках, ориентируясь при этом на строки и столбцы: a1[1][2].
Многомерный массив в Python
В предыдущем случае мы говорили о двумерном массиве, который представлен в виде сложного списка. Собственно говоря, в случае с многомерным массивом суть не изменилась, поэтому его можно реализовать по аналогичному принципу «списки внутри списка». В следующем примере мы создадим трехмерный массив, заполняемый нулевыми элементами посредством 3-х циклов for. В результате программа сформирует матрицу размерностью 5×5×5.
a1 = [] for k in range(5): a2 = [] for j in range(5): a3 = [] for i in range(5): a3.append(0) a2.append(a3) a1.append(a3)Как и в случае с 2-мерным массивом в Python, мы можем обращаться к требуемой ячейке многомерного массива, используя индексы в квадратных скобках: a1[4][2][3].
Выводы
Итак, для взаимодействия с данными и наборами данных одного типа в Python часто применяют массивы. Стандартная библиотека платформы даёт возможность успешно работать с такой структурой. При этом поддерживается многомерное представление списков, а ограничения на количество уровней так называемого массива отсутствует.
Python объявление трехмерного массива
![]()
2. Изменяем форму с помощью метода reshape()
Оси и измерения. Чтобы изменить форму массива a1 , используем метод reshape() . Преобразуем одномерный массив из 12 чисел в двумерную таблицу размером 3×4. Первое число – количество строк, второе – столбцов. Строки соответствуют оси (англ. axis) 0, столбцы – оси 1. Ещё их называют измерениями (англ. dimensions).
Автоматическое вычисление размерности. Если нужно, чтобы NumPy сам определил размер незаданного измерения, передайте на этой позиции значение -1 :
Какую размерность имеет исходный массив a1 ? Может показаться, что массив a1 имеет размерность (1, 12) . Но это одномерный массив с размерностью (12, ) . Чтобы преобразовать одномерный массив к двумерному, используем метод reshape() :
Теперь соберём из них трёхмерный массив:
![]()
Источники