How to create date object in Java?
You can create a Date object using the Date() constructor of java.util.Date constructor as shown in the following example. The object created using this constructor represents the current time.
Example
import java.util.Date; public class CreateDate < public static void main(String args[]) < Date date = new Date(); System.out.print(date); >>
Output
Thu Nov 02 15:43:01 IST 2018
Using the SimpleDateFormat class
Using the SimpleDateFormat class and the parse() method of this you can parse a date string in the required format and create a Date object representing the specified date.
Example
import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.Date; public class Test < public static void main(String args[]) throws ParseException < String date_string = "26-09-1989"; //Instantiating the SimpleDateFormat class SimpleDateFormat formatter = new SimpleDateFormat("dd-MM-yyyy"); //Parsing the given String to Date object Date date = formatter.parse(date_string); System.out.println("Date value: "+date); >>
Output
Date value: Tue Sep 26 00:00:00 IST 1989
Using the LocalDate class
A LocalDate object is similar to the date object except it represents the date without time zone, you can use this object instead of Date.
- The now() method of this class returns a LocalDate object representing the current time
- The of() method accepts the year, month and day values as parameters an returns the respective LocalDate object.
- The parse() method accepts a date-string as a parameter and returns the LocalDate object5 representing the given date.
Example
import java.time.LocalDate; public class Test < public static void main(String args[]) < LocalDate date1 = LocalDate.of(2014, 9, 11); System.out.println(date1); LocalDate date2 = LocalDate.parse("2007-12-03"); System.out.println(date2); LocalDate date3 = LocalDate.now(); System.out.println(date3); >>
Output
2014-09-11 2007-12-03 2020-11-05
Class Date
Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.
Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24 × 60 × 60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a «leap second.» The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.
Some computer standards are defined in terms of Greenwich mean time (GMT), which is equivalent to universal time (UT). GMT is the «civil» name for the standard; UT is the «scientific» name for the same standard. The distinction between UTC and UT is that UTC is based on an atomic clock and UT is based on astronomical observations, which for all practical purposes is an invisibly fine hair to split. Because the earth’s rotation is not uniform (it slows down and speeds up in complicated ways), UT does not always flow uniformly. Leap seconds are introduced as needed into UTC so as to keep UTC within 0.9 seconds of UT1, which is a version of UT with certain corrections applied. There are other time and date systems as well; for example, the time scale used by the satellite-based global positioning system (GPS) is synchronized to UTC but is not adjusted for leap seconds. An interesting source of further information is the United States Naval Observatory (USNO):
and the material regarding «Systems of Time» at:
which has descriptions of various different time systems including UT, UT1, and UTC.
- A year y is represented by the integer y — 1900 .
- A month is represented by an integer from 0 to 11; 0 is January, 1 is February, and so forth; thus 11 is December.
- A date (day of month) is represented by an integer from 1 to 31 in the usual manner.
- An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1 a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.
- A minute is represented by an integer from 0 to 59 in the usual manner.
- A second is represented by an integer from 0 to 61; the values 60 and 61 occur only for leap seconds and even then only in Java implementations that actually track leap seconds correctly. Because of the manner in which leap seconds are currently introduced, it is extremely unlikely that two leap seconds will occur in the same minute, but this specification follows the date and time conventions for ISO C.
In all cases, arguments given to methods for these purposes need not fall within the indicated ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1.
Constructor Summary
Allocates a Date object and initializes it so that it represents the time at which it was allocated, measured to the nearest millisecond.
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date) or GregorianCalendar(year + 1900, month, date) .
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min) or GregorianCalendar(year + 1900, month, date, hrs, min) .
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec) .
Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as «the epoch», namely January 1, 1970, 00:00:00 GMT.
Class Date
Prior to JDK 1.1, the class Date had two additional functions. It allowed the interpretation of dates as year, month, day, hour, minute, and second values. It also allowed the formatting and parsing of date strings. Unfortunately, the API for these functions was not amenable to internationalization. As of JDK 1.1, the Calendar class should be used to convert between dates and time fields and the DateFormat class should be used to format and parse date strings. The corresponding methods in Date are deprecated.
Although the Date class is intended to reflect coordinated universal time (UTC), it may not do so exactly, depending on the host environment of the Java Virtual Machine. Nearly all modern operating systems assume that 1 day = 24 × 60 × 60 = 86400 seconds in all cases. In UTC, however, about once every year or two there is an extra second, called a «leap second.» The leap second is always added as the last second of the day, and always on December 31 or June 30. For example, the last minute of the year 1995 was 61 seconds long, thanks to an added leap second. Most computer clocks are not accurate enough to be able to reflect the leap-second distinction.
Some computer standards are defined in terms of Greenwich mean time (GMT), which is equivalent to universal time (UT). GMT is the «civil» name for the standard; UT is the «scientific» name for the same standard. The distinction between UTC and UT is that UTC is based on an atomic clock and UT is based on astronomical observations, which for all practical purposes is an invisibly fine hair to split. Because the earth’s rotation is not uniform (it slows down and speeds up in complicated ways), UT does not always flow uniformly. Leap seconds are introduced as needed into UTC so as to keep UTC within 0.9 seconds of UT1, which is a version of UT with certain corrections applied. There are other time and date systems as well; for example, the time scale used by the satellite-based global positioning system (GPS) is synchronized to UTC but is not adjusted for leap seconds. An interesting source of further information is the United States Naval Observatory (USNO):
and the material regarding «Systems of Time» at:
which has descriptions of various different time systems including UT, UT1, and UTC.
- A year y is represented by the integer y — 1900 .
- A month is represented by an integer from 0 to 11; 0 is January, 1 is February, and so forth; thus 11 is December.
- A date (day of month) is represented by an integer from 1 to 31 in the usual manner.
- An hour is represented by an integer from 0 to 23. Thus, the hour from midnight to 1 a.m. is hour 0, and the hour from noon to 1 p.m. is hour 12.
- A minute is represented by an integer from 0 to 59 in the usual manner.
- A second is represented by an integer from 0 to 61; the values 60 and 61 occur only for leap seconds and even then only in Java implementations that actually track leap seconds correctly. Because of the manner in which leap seconds are currently introduced, it is extremely unlikely that two leap seconds will occur in the same minute, but this specification follows the date and time conventions for ISO C.
In all cases, arguments given to methods for these purposes need not fall within the indicated ranges; for example, a date may be specified as January 32 and is interpreted as meaning February 1.
Constructor Summary
Allocates a Date object and initializes it so that it represents the time at which it was allocated, measured to the nearest millisecond.
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date) or GregorianCalendar(year + 1900, month, date) .
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min) or GregorianCalendar(year + 1900, month, date, hrs, min) .
As of JDK version 1.1, replaced by Calendar.set(year + 1900, month, date, hrs, min, sec) or GregorianCalendar(year + 1900, month, date, hrs, min, sec) .
Allocates a Date object and initializes it to represent the specified number of milliseconds since the standard base time known as «the epoch», namely January 1, 1970, 00:00:00 GMT.