Synchronized Methods
The Java programming language provides two basic synchronization idioms: synchronized methods and synchronized statements. The more complex of the two, synchronized statements, are described in the next section. This section is about synchronized methods.
To make a method synchronized, simply add the synchronized keyword to its declaration:
public class SynchronizedCounter < private int c = 0; public synchronized void increment() < c++; >public synchronized void decrement() < c--; >public synchronized int value() < return c; >>
If count is an instance of SynchronizedCounter , then making these methods synchronized has two effects:
- First, it is not possible for two invocations of synchronized methods on the same object to interleave. When one thread is executing a synchronized method for an object, all other threads that invoke synchronized methods for the same object block (suspend execution) until the first thread is done with the object.
- Second, when a synchronized method exits, it automatically establishes a happens-before relationship with any subsequent invocation of a synchronized method for the same object. This guarantees that changes to the state of the object are visible to all threads.
Note that constructors cannot be synchronized using the synchronized keyword with a constructor is a syntax error. Synchronizing constructors doesn’t make sense, because only the thread that creates an object should have access to it while it is being constructed.
Warning: When constructing an object that will be shared between threads, be very careful that a reference to the object does not «leak» prematurely. For example, suppose you want to maintain a List called instances containing every instance of class. You might be tempted to add the following line to your constructor:
But then other threads can use instances to access the object before construction of the object is complete.
Synchronized methods enable a simple strategy for preventing thread interference and memory consistency errors: if an object is visible to more than one thread, all reads or writes to that object’s variables are done through synchronized methods. (An important exception: final fields, which cannot be modified after the object is constructed, can be safely read through non-synchronized methods, once the object is constructed) This strategy is effective, but can present problems with liveness, as we’ll see later in this lesson.
Intrinsic Locks and Synchronization
Synchronization is built around an internal entity known as the intrinsic lock or monitor lock. (The API specification often refers to this entity simply as a «monitor.») Intrinsic locks play a role in both aspects of synchronization: enforcing exclusive access to an object’s state and establishing happens-before relationships that are essential to visibility.
Every object has an intrinsic lock associated with it. By convention, a thread that needs exclusive and consistent access to an object’s fields has to acquire the object’s intrinsic lock before accessing them, and then release the intrinsic lock when it’s done with them. A thread is said to own the intrinsic lock between the time it has acquired the lock and released the lock. As long as a thread owns an intrinsic lock, no other thread can acquire the same lock. The other thread will block when it attempts to acquire the lock.
When a thread releases an intrinsic lock, a happens-before relationship is established between that action and any subsequent acquisition of the same lock.
Locks In Synchronized Methods
When a thread invokes a synchronized method, it automatically acquires the intrinsic lock for that method’s object and releases it when the method returns. The lock release occurs even if the return was caused by an uncaught exception.
You might wonder what happens when a static synchronized method is invoked, since a static method is associated with a class, not an object. In this case, the thread acquires the intrinsic lock for the Class object associated with the class. Thus access to class’s static fields is controlled by a lock that’s distinct from the lock for any instance of the class.
Synchronized Statements
Another way to create synchronized code is with synchronized statements. Unlike synchronized methods, synchronized statements must specify the object that provides the intrinsic lock:
public void addName(String name) < synchronized(this) < lastName = name; nameCount++; >nameList.add(name); >
In this example, the addName method needs to synchronize changes to lastName and nameCount , but also needs to avoid synchronizing invocations of other objects’ methods. (Invoking other objects’ methods from synchronized code can create problems that are described in the section on Liveness.) Without synchronized statements, there would have to be a separate, unsynchronized method for the sole purpose of invoking nameList.add .
Synchronized statements are also useful for improving concurrency with fine-grained synchronization. Suppose, for example, class MsLunch has two instance fields, c1 and c2 , that are never used together. All updates of these fields must be synchronized, but there’s no reason to prevent an update of c1 from being interleaved with an update of c2 and doing so reduces concurrency by creating unnecessary blocking. Instead of using synchronized methods or otherwise using the lock associated with this , we create two objects solely to provide locks.
public class MsLunch < private long c1 = 0; private long c2 = 0; private Object lock1 = new Object(); private Object lock2 = new Object(); public void inc1() < synchronized(lock1) < c1++; >> public void inc2() < synchronized(lock2) < c2++; >> >
Use this idiom with extreme care. You must be absolutely sure that it really is safe to interleave access of the affected fields.
Reentrant Synchronization
Recall that a thread cannot acquire a lock owned by another thread. But a thread can acquire a lock that it already owns. Allowing a thread to acquire the same lock more than once enables reentrant synchronization. This describes a situation where synchronized code, directly or indirectly, invokes a method that also contains synchronized code, and both sets of code use the same lock. Without reentrant synchronization, synchronized code would have to take many additional precautions to avoid having a thread cause itself to block.
Синхронизация потоков, блокировка объекта и блокировка класса
Синхронизация относится к многопоточности. Синхронизированый блок кода может быть выполнен только одним потоком одновременно. Java поддерживает несколько потоков для выполнения. Это может привести к тому, что два или более потока получат доступ к одному и тому же полю или объекту. Синхронизация это процесс, который позволяет выполнять все параллельные потоки в программе синхронно. Синхронизация позволяет избежать ошибок согласованности памяти, вызванные из-за непоследовательного доступа к общей памяти. Когда метод объявлен как синхронизированный — нить держит монитор для объекта, метод которого исполняется. Если другой поток выполняет синхронизированный метод, ваш поток заблокируется до тех пор, пока другой поток не отпустит монитор. Синхронизация достигается в Java использованием зарезервированного слова synchronized . Вы можете использовать его в своих классах определяя синхронизированные методы или блоки. Вы не сможете использовать synchronized в переменных или атрибутах в определении класса.
Блокировка на уровне объекта
Это механизм синхронизации не статического метода или не статического блока кода, такой, что только один поток сможет выполнить данный блок или метод на данном экземпляре класса. Это нужно делать всегда, когда необходимо сделать данные на уровне экземпляра потокобезопасными. Пример:
Блокировка на уровне класса
Предотвращает возможность нескольким потокам войти в синхронизированный блок во время выполнения в любом из доступных экземпляров класса. Это означает, что если во время выполнения программы имеется 100 экземпляров класса DemoClass , то только один поток в это время сможет выполнить demoMethod() в любом из случаев, и все другие случаи будут заблокированы для других потоков. Это необходимо когда требуется сделать статические данные потокобезопасными.
Некоторые важные замечания
- Синхронизация в Java гарантирует, что никакие два потока не смогут выполнить синхронизированный метод одновременно или параллельно.
- synchronized можно использовать только с методами и блоками кода. Эти методы или блоки могут быть статическими или не-статическими.
- когда какой либо поток входит в синхронизированный метод или блок он приобретает блокировку и всякий раз, когда поток выходит из синхронизированного метода или блока JVM снимает блокировку. Блокировка снимается, даже если нить оставляет синхронизированный метод после завершения из-за каких-либо ошибок или исключений.
- synchronized в Java рентерабельна это означает, что если синхронизированный метод вызывает другой синхронизированный метод, который требует такой же замок, то текущий поток, который держит замок может войти в этот метод не приобретая замок.
- Синхронизация в Java будет бросать NullPointerException если объект используемый в синхронизированном блоке null. Например, в вышеприведенном примере кода, если замок инициализируется как null , синхронизированный (lock) бросит NullPointerException .
- Синхронизированные методы в Java вносят дополнительные затраты на производительность вашего приложения. Так что используйте синхронизацию, когда она абсолютно необходима. Кроме того, рассмотрите вопрос об использовании синхронизированных блоков кода для синхронизации только критических секций кода.
- Вполне возможно, что и статический и не статический синхронизированные методы могут работать одновременно или параллельно, потому что они захватывают замок на другой объект.
- В соответствии со спецификацией языка вы не можете использовать synchronized в конструкторе это приведет к ошибке компиляции.
- Не синхронизируйте по не финальному (no final) полю, потому что ссылка, на не финальное поле может измениться в любое время, а затем другой поток может получить синхронизацию на разных объектах и уже не будет никакой синхронизации вообще. Лучше всего использовать класс String , который уже неизменяемый и финальный.